
CIT Brains (Kid Size League)

Yasuo Hayashibara1, Hideaki Minakata1, Kiyoshi Irie1,
Naoaki Hatakeyama1, Daiki Maekawa1, George Tsukioka1, Yasufumi Suzuki1,
Taiitiro Mashiko1, Yusuke Ito1, Ryu Yamamoto1, Masayuki Ando1, Yu Kato1,

Takanari Kida1, Yuhdai Suzuki1, Kazuyoshi Makisumi1, Nung Duk Yun1,
Shouta Hirama1, Yukari Suzuki1, Chisato Kasebayashi1, Akira Tanabe1,

Akira Kudo1, Youta Seki1, Moeno Masuda1, Yuya Hirata1, Yuuki Kanno1,
Tomotaka Suzuki1, Joshua Supratman1, Kosuke Machi2,

Shigechika Miki3, Yoshitaka Nishizaki4, Kenji Kanemasu5,
Hajime Sakamoto6

1Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, JAPAN
yasuo.hayashibara@it-chiba.ac.jp

2Sagawa Electronics, Inc., Matsudo, Chiba, JAPAN

3Miki Seisakusyo Co, Ltd., 1-7-28 Ohno, Nishiyodogawa, Osaka, JAPAN
4Nishizaki Co, Ltd., 1-7-27 Ohno, Nishiyodogawa, Osaka, JAPAN

5Yosinori Industry,Ltd., 1-1-7 Fukumachi, Nishiyodogawa, Osaka, JAPAN
6Hajime Research Institute, Ltd., 1-7-28 Ohno, Nishiyodogawa, Osaka, JAPAN

sakamoto@hajimerobot.co.jp

Abstract. In this paper, we describe the system design by our Team, CIT
Brains, for the RoboCup soccer kid size humanoid league. We have been par-
ticipating in the Humanoid League for nine years. Three years ago, we redesign
the system in which we put a large weight on maintainability and usability. In
RoboCup 2014, we received first prizes on 4on4 soccer and technical challenge.
Consequently, we were also awarded the Louis Vuitton Humanoid Cup. The
system we developed has high mobility, high speed, strong kicks, well-designed
control system, position estimation by a monocular camera and user-friendly in-
terface. The robot can walk speedily and robustly. It includes feedback system
with a gyro sensor to prevent falling. It also detects the positions of landmarks
by color-based image processing. A particle filter is employed to localize the
robot in the soccer field fusing motion model and landmark observation.

Keywords: Humanoid Robots, Programming Environment, Education Robotics

1 Introduction

In this paper, we describe our system for the RoboCup soccer kid size humanoid
league. In 2014, we received first prizes on 4on4 soccer and technical challenge. Con-
sequently, we were also awarded the Louis Vuitton Humanoid Cup in RoboCup2014
Brazil.

CIT Brains is a joint team consisting of Hajime Research Institute and Chiba Insti-
tute of Technology (CIT). Hajime Research Institute developed the mechanism and
the prototype of control system of the robot. CIT developed computer system and
overall intelligence such as perception and planning. CIT also made some contribu-
tions to improve the mechanism and control. We would like to emphasize that most of
the members from CIT are undergraduate students. Any students who want to join
this development can join the team. Senior students teach them from the basic knowl-
edge of the robot system. We also aim to make an educational and research platform
of intelligent humanoid.

2 Overview of the System

A photograph of our robot is shown in Fig. 1. The specification of the robot is indi-
cated in Table 1. An overview of the system is shown in Fig. 2. Figure 3 shows the
architecture of the software system. Our robot system consists of a USB camera, a
computer board, an Inertial Measurement Unit (IMU), 17 servo motors, a battery and
several user interfaces such as switches. Images are captured by the USB camera and
processed on the main CPU board. The robot continuously estimates self-position.
Depending on the data received, the robot selects its next behavior. Simple behaviors,
such as moving, to complex behavior, such as following the ball, are described in the
soccer strategy program. Commands to choose behaviors are sent to the body control
process which decodes and execute the command. Each servo motors are daisy-
chained; the commands are sent to all the motors which decodes and execute the
commands. In total, this system is constructed as a well-designed hierarchic system.
Therefore, the system can be modified easily.

3 Mobility

One of the significant features of our robot is high-speed and stable mobility. When
carefully tuned, the maximum walking speed is approximately 0.4m/s. It is important
to keep the stability for long periods of time as many robots participating in the Hu-
manoid League tend to become unstable in the later part of the matches due to over-
heating. Our robots, however, can maintain stable walk during full match.

The leg structure is designed using a parallel mechanism as shown in the Fig. 4.
The mechanism enables stable walking as the feet are mechanically kept angle to the
body even if the motor has not synchronized completely while walking. Large torque
servo motors are needed to prevent overheating. We employ Futaba RS405CB with a
maximum torque of 48kg-cm. Active cooling fans are also attached to motors on the
knees and the ankle joints. Heat from the motors is suppressed by abovementioned
factors, and therefore our robot can walk stably even after long operations.

Fig. 1. Structure of the robot

Table 1. Specification of the robot

Weight 3.5 kg (Including Batteries)

Height 600 mm

Velocity (Forward) 0.4 m/s (maximum)

Walking Directions All Direction and Rotation
(Select the Angle, Stride, Period and so on)

CPU Board COMMEL LP-170C (Intel Atom D525 1.8GHz)

OS Linux (Ubuntu12.04LTS)

Interface Ethernet x 1, USB x 1,
Speaker, DIP switch x4, Push switch x 1

Servo Motor Futaba RS405CB x 17

Battery 3S (11.1V, 5000mAh)

Fig. 2. Overview of the hardware system

Fig. 3. Architecture of the software system.

Fig. 4. Parallel mechanism of foot.

4 Computer System

4.1 Hardware

One significant feature of the robot is the high computational capability and the
ease of maintenance. The computer board we employ (LP-170C) has an Atom D525
CPU, with a Linux operating system. Linux has advantages in ease of installation and
operation compared to other operating systems we have previously used (Windows
and NetBSD). All software modules we develop including perception and control are
executed on it. To improve the maintainability of electronic components, we designed
a slot-in mechanism for the main control circuit as shown in Fig. 5. From this mecha-
nism, we eliminated a huge number of cables. Another nice feature is battery charg-
ing. Using an A/C adapter, batteries can be charged without using an external charger.

4.2 Development Environment

 We have decided to install our development environment to each robot so that we
can edit and compile source codes in the onboard computer. We directly operate the
onboard computer by connecting a display and a USB keyboard (Figure 6), or re-
motely operate it via VNC. The charging circuit significantly improved ease of devel-
opment. While we are editing and compiling source codes, we plug the A/C adapter to
the robot and charge the battery. Servo motors are automatically powered off when
A/C adapter is plugged. When we want to check the software using the robot, we
unplug the adapter then the power of the motors is automatically turned on and we
only need to put the robot on the field. We achieved laptop-like usability.

5 Software System

5.1 Architecture

Figure 3 shows the architecture of the software system. All software modules in-
cluding perception, planning, and control are executed on the main computer board.
Two processes are executed on a single computer: one is for perception and planning
and the other is for control. Images are captured by the USB camera, and processed
on the computer board to detect the position of the ball, other robots and landmarks.
The robot continuously estimates self-position using the obtained information. Higher
level of the robot behaviors such as following a ball are described in the soccer strat-
egy programs. The soccer strategy programs are written in Python for ease of trial-
and-error type of development while the rest of the software modules are written in C
and C++.

The body control tasks are operated in the dedicated control process. The control
process controls the body according to commands sent from the main process such as
walk and kick. The status of the robot (e.g. posture) is periodically sent to the main
process. The control process operates the servo motors by sending commands to
them. An IMU is used for gyro feedback and posture estimation.

Fig. 5. Slot-in System.

Fig. 6. Software development environment.

We employ Internet Communication Engine (ICE) for communication between
software components. ICE is a middleware for distributed computing including Re-
mote Procedure Call (RPC). ICE is known to be computationally efficient compared
to other middleware such as CORBA. Our software modules running in different
processes or computer hosts communicate via ICE.

5.2 Image Processing

Objects such as balls or robots are detected by color-based image processing. Ob-
ject colors are detected by a pre-calibrated look-up table. Regions of the same color
are then grouped by a connected-component labeling algorithm. Object positions are
calculated from the object position in an image and the pose of the camera under the
assumption that all objects are on the floor. The pose of the camera is calculated by
inverse kinematics. The resolution of the images can be selected from either 640x480
or 320x240. Our algorithm runs at 20 fps with onboard computer. An example of the
calculation is shown in the Fig. 7. The color look-up table must be manually cali-

brated every time. We developed a GUI to build the table smoothly. The operator
registers colors in images by clicking the image on the GUI. The color detection result
is also displayed and updated real-time; therefore the operator can interactively cali-
brate and verify the color table.

Fig. 7. Our graphical user interface. Positions of detected objects are visualized.

5.3 Localization

The robot position and orientation are estimated using a particle filter that fuses
motion estimations and observations. The hypotheses of robot position are repre-
sented by particles and they are updated as robot moves. The robot motion is esti-
mated by kinematics and gyro. When landmarks such as white lines and goal posts are
observed, the particles are weighted according to the observation likelihood and re-
sampled.

5.4 Obstacle Avoidance

We use graph-based path planning for obstacle avoidance. Several control points
are placed around the detected obstacles (i.e. other robots) and a complete graph is
built by connecting all control points, start point, and destination point. Costs are set
to all edges of the graph according to its length and distance to the obstacles. Dijkstra
algorithm is employed to find the path with minimal cost.

5.5 Tools for Software Development

We developed a user-friendly GUI tool for soccer strategy development environ-
ment (Figure 8). The programmer can interactively check many kinds of things in this
interface. The functionalities provided by the interface are as follows.

[User operation]
1) Send commands to the control process
2) Build a color look-up table
3) Execute strategy programs by its name
[Status monitoring]
1) Image data (both raw and processed image)
2) Detected objects and their position
3) Estimated robot position and particles
4) Debugging messages
5) Battery voltage and temperatures of servo motors

The GUI displays most of the significant status of the robot so that the programmer

can check the algorism and find problems easily.
We also developed a simulator based on V-REP. V-REP is an open source robot

simulator made by COPPELIA ROBOTICS. Almost all behaviors of robot such as
motions and soccer strategies can be verified in this simulator. We can apply the veri-
fied code to the real robot without modification.

Fig. 8. Soccer strategy development environment and simulator software

6 Conclusion

In this paper we describe our autonomous soccer humanoid system. Our system
has high mobility, well-designed control system, position estimation by one camera,
user-friendly interface and simulator.

