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Abstract. The CMDragons team reached the finals of the Small Size
League of RoboCup 2014. In this paper, we present the team’s recent
work on the offensive and defensive tactics, low level skills, and state
estimation. Among the offensive tactics, we introduce the concept of
contingency options for teams of robots in the presence of uncertainty
via zone-based, and support attack. We increase the robustness of the
defense by creating specialized skills for handling loose balls near the
defense area as well concerted multi-robot shot-blocking. We present a
robot ball-manipulation skill for dribbling the ball while turning quickly.
Finally, we describe improvements to the ball state estimation algorithms
by accounting for collisions with dynamic robots.

1 Introduction

The CMDragons 2015 team from Carnegie Mellon University (Figure 1) builds
upon the ongoing research from previous years (1997–2010, 2013-2014 [1]). This
paper focuses on the technical contributions of our team over the past year. Our
team website1 provides an overall description of our team.

In the following sections, we present our work related to the offense and
defense tactics, ball-dribbling skills, and state estimation. Section 2 introduces
the concept of contingency options in offense, and shows two applications of
this concept: Zone-based Team Coordination, and a Support Attacker tactic.
Section 3 presents our innovations in defense, which consist of plays and skills
to defend against corner kicks and to block incoming shots towards the goal.
Section 4 describes a robust method for dribbling the ball while turning quickly.
We discuss improvements to ball tracker in Section 5. Section 7 summarizes the
contributions and discusses future work.

2 Offensive Contributions: Contingency options

We have previously introduced robust skills for fast interception of moving
balls [1], and an attacker tactic that chooses the appropriate skills to intercept

1 http://www.cs.cmu.edu/~robosoccer/small/
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Fig. 1: CMDragons team of soccer robots. In the background, our layered disclo-
sure viewing and debugging tool [2].

and shoot the ball in the minimum possible time. However, in an adversarial
domain, there are multiple possible future outcomes that depend on the exact
actions taken by opponent robots. For example, if a moving ball is unlikely to
be intercepted by an opponent robot, the attacker tactic could continue to use
its time-optimal ball interception skill to receive the ball, while if an opponent
robot is likely to intercept the ball, the attacker tactic would drive up to the
interception point. The attacker tactic always chooses to act on the most likely
outcome, based on the current perceived world state, and the models of the
opponents’ capabilities. To handle the other possible outcomes, we therefore in-
troduce contingency options for our offense: robot roles that enable offense to be
robust in scenarios that are not the most likely ones. We implement this concept
through Zone-based Team Coordination, and a Support Attacker tactic. The
purpose of these contingency options is not to replace the primary attacker, but
to complement it. While the primary attacker acts on the most likely future ball
trajectory, Zone-based Team Coordination and Support Attacker enable offense
robots to pursue other likely future ball trajectories.

2.1 Zone-based Team Coordination

Our team has introduced various algorithms to coordinate offense robots. We
have introduced plays as predefined team policies based on individual robot
skills and tactics [3]. In this system, the plays were organized in a playbook,
with weights that could be adjusted with experience [4]. In our CMDragons
2013 team, we departed from the playbook approach for planning during free
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kicks. Instead we introduced a coerce-and-attack planning strategy [5], an al-
gorithm that searched for possible plans taking the opponent predicted moves
into account. The core aspect of the algorithm consisted on the generation of
two possible plans, one of which was revealed to induce the opponents to take
positions that would open opportunities for a second viable plan. During the
game, teamwork was still achieved through a playbook.

Since last year, our research has focused on teamwork while the game is on,
rather than stopped for a free kick. We have introduced a Zone-based Team Co-
ordination in which we divide the field in zones to be assigned to offense robots.
We investigate several issues related to the definition of the zones, including (i)
their dimensions and number; (ii) their degree of overlap; and (iii) their dynamic
resetting during the game, as a function of the score and time left.

The Zone-based Team Coordination algorithm must assign robots to zones,
and the behavior for each robot within its zone. Given a set of robots R assigned
to offense, we partition the field F into |R| zones, such that there exists a one-
to-one mapping from robots to zones. Each robot ri ∈ R thus gets assigned to a

corresponding zone Zi ⊆ F , where
⋃|R|
i=1 Zi = F . Figure 2 shows an example of

such an assignment, with three offense robots and their respective zones.

Fig. 2: Offense robots of the yellow team (three rightmost yellow robots) are each
assigned a zone, delineated by yellow lines. Black and gray circles show the set
of possible and assigned guard positions, respectively.

Given an assignment of zones to robots, our algorithm determines the be-
havior of each robot ri in its zone Zi. Let Xg

i be a set of guard positions in each
zone Zi. If ri computes that the ball will enter zi, then ri moves to intercept the
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ball in its zone at the optimal location xa(ri); otherwise ri moves to one of the
guard positions xg(ri) ∈Xg

i . The target location xt(ri) for ri is thus given by:

xt(ri) =

{
xa(ri) if xa(ri) ∈ Zi
xg(ri) otherwise

(1)

Figure 2 shows one robot intercepting the ball at its optimal location xa,
and two robots placed in their assigned guard positions. We note that, when
multiple robots predict the ball to be heading toward their zone, they all move
to intercept it within their own zone, thus creating multiple contingency options.

We continue to investigate algorithms to set guard positions, as a function of
the joint attack, the ball positioning, and the opponent positioning. Our plan is
to analyze the impact of multiple alternative choices for the zone definition and
robot policy assignment in extensive tests in our simulation environments.

2.2 Support Attacker

To further create contingency options in offense, we present the concept of a Sup-
port Attacker, which complements Zone-based Team Coordination: while Zone-
based Team Coordination ensures good offense coverage of the field, Support
Attacker provides a contingency option specifically near the ball.

The Support Attacker robot rSA always stays at a fixed distance dSA from
the ball, in a direction uSA from which it is likely to be recover a loose ball:

xt(rSA) = xb + dSAuSA, (2)

Our ongoing work involves investigating algorithms to determine dSA and
uSA. A simple but effective assignment for dSA is a constant value that is large
enough to not interfere with the Primary Attacker, but small enough to provide
support in case the ball follows a trajectory other than the predicted most likely
one. It is also possible to adapt dSA as a function of the current action of the
Primary Attacker, or other features of the world.

Our algorithm determines the direction uSA as a function of the distance
from the ball at which opponents are located. If there is an opponent nearby,
uSA is chosen to block a potential shot on our goal; if there is no opponent
nearby, uSA is chosen to be aligned with the opponent’s goal, ready to shoot.
Figure 3 shows an example of a robot acting as a support attacker. We note that,
even though the support attacker always tries to maintain a distance dSA from
the ball, dynamic role assignment [3] enables a Support Attacker to become the
Primary Attacker when appropriate.

3 Defense

Our defense relies on a threat-based evaluator [5], which we briefly summarize
here for context to our innovations. The evaluator considers the positions of
the ball and the opponent robots to compute the first-level threat and several
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Fig. 3: Offensive play of the yellow team with three robots attacking by zone
and one being a support attacker. The support attacker locates itself at the
intersection between the black circle (dSA) and the black line (direction of uSA).

second-level threats, which are positions on the field. The first-level threat rep-
resents the most immediate means for the opponents to score a goal. When an
opponent is about to receive the ball, the first-level threat is the position of
that opponent; otherwise, it is the position of the ball. The second-level threats
represent possible indirect attacks on our goal; they are given by the locations
of all opponents except one which is most likely to able to receive the ball first.

The available defenders are then positioned based on the locations of the
threats. Primary defenders, of which there are usually two, move around the
edge of the defense area, acting as the last line of defense before the goalie;
secondary defenders move further out on the field, intercepting passes and shots
by the opponent earlier on. The primary defenders typically defend against the
first-level threat, staying between the ball and the goal; if there are two, but
only one is needed to do so, the other will move elsewhere on the defense area
to guard some second-level threat. The secondary defenders guard against the
second-level threats; each one positions itself on a line either from a second-level
threat to the goal (to block an indirect shot) or from the first-level threat to a
second-level threat (to block a pass).

The computation is described in terms of tasks: each threat generates one or
more tasks, each consisting of one or two positions, a priority, and other auxiliary
information; the tasks are then assigned in decreasing order of priority to the
available defenders. Second-level threats to block shots include two positions:
one near the defense circle, in case the task is assigned to a primary defender,
and one further out, for a secondary defender.



6

We have extended this evaluator to account for various special game states.

3.1 Three or more primary defenders

Corner kicks taken by the opponent team present a challenging problem for
our defense, since opponents tend to attack with more robots than during the
rest of the game, and they have an opportunity to build a play from a static
ball. Assigning the appropriate defensive roles in which robots do not interfere
with each other’s navigation is particularly challenging when opponents quickly
change formations. Figure 4 shows our solution to this, which involves assigning
the role of primary defender to all our defensive robots.

This reduces the problem of positioning the defenders from a two-dimensional
problem to a one-dimensional one, ensuring that the evaluator can assign po-
sitions to them in a manner which prevents collisions and interference. In this
mode, the first-level threat and associated defender position or positions are
computed as normal. For second-level threats, only shot-blocking tasks and only
their positions near the defense are considered. All the positions are sorted by
their linear position around the defense area. Now, in order to avoid collisions
while allowing all robots to reach their target positions, the positions must be
moved away from each other. The first-level position(s) are treated as fixed, since
they represent the most important positions to block; the second-level positions
are moved away from the first-level positions if necessary so that there is enough
space between them for robots to reach the positions without colliding.
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Fig. 4: Examples of our defense’s response to opponent positions while all de-
fenders are primary defenders. If opponent 2 crosses behind the other three op-
ponents, the defenders smoothly shift to follow the movement, staying in order
without crossing past each other.

3.2 Blocking incoming shots

When two primary defenders are positioned to block a potential shot, it is of-
ten necessary to leave a small gap between them to fully block the angle to the
goal. While the goalie is positioned to block direct shots that pass between the
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defenders, bounces from the sides of the defenders emerge from the gap at unpre-
dictable angles. We have solved this problem by forcing the primary defenders
to quickly come together when there is an incoming shot aimed between them,
reducing the likelihood that this can happen. Additionally, to prevent collisions,
our algorithms evaluate which is better positioned to intercept and clear the
ball. That defender then moves forward to do so, while the other stays behind.

4 Fast Dribbling and Turning

Many teams in the SSL, including CMDragons, currently dribble the ball by
imparting backspin on it. This method helps the robot drive into the ball while
maintaining contact with it. However, imparting backspin on the ball while turn-
ing is much more difficult than doing so without turning; in this section, we
describe our ongoing effort to achieve reliable dribbling while turning quickly.

First, we describe a few intuitive approaches that fail to be robust enough
while turning quickly. The first approach one could take is simply to drive around
the center of the ball to turn to the desired direction. This approach works well
when the ball has no spin on it, as no forces are applied on it while the robot
drives around. However, when the robot has imparted backspin on the ball, the
ball will roll and be lost as the robot turns around it.

Figure 5a shows a different intuitive but ultimately insufficient approach,
in which the robot drives forward with speed s while gradually changing its
orientation with speed ω, forming a circle of radius R. These quantities are
constrained by s = ωR, and which two parameters are free depend on the use
of the skill. We note that the robot turning in place is a special case of this in
which R is the distance between the robot’s center and the dribbler. As Figure 5a
shows, there is no force to balance the centrifugal force experienced by the ball,
and therefore the ball escapes the robot’s dribbler.

Figure 5b shows our proposed approach for Fast Dribbling and Turning
(FDaT), in which the robot turns while pushing the ball, but facing in a di-
rection φ that provides the necessary centripetal force to maintain the ball on
the dribbler of the robot: facing slightly inwards while turning provides a com-
ponent of the normal force from the robot that always points towards the center
of the circumference. The constraints s = ωR hold in this case as well. The nec-
essary angle offset φ can be obtained analytically by noticing that all the forces
in Figure 5b need to cancel out in the rotating reference frame. Therefore, we
obtain the pair of equations:

|fN | cosφ = |fC |
|fN | sinφ = |fF |. (3)

Then, given the acceleration of gravity g, the coefficient of friction of the carpet
µ and the mass of the ball m (which cancels out in the end), we obtain:

|fN | cosφ = mω2R

|fN | sinφ = µmg. (4)
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fN

fF

fC

R

(a) Robot dribbling ball while driving
forward and turning. No force can bal-
ance the centrifugal force fC .

fN

fF

fCR

φ

(b) Robot dribbling ball while facing
slightly inwards. There exists an angle
φ for which the forces are balanced.

Fig. 5: Two approaches to dribbling while turning. The gray shape represents
the dribbling robot, the orange circle the ball and the dotted blue circle the
desired trajectory. Black arrows show the forces acting on the ball, in the rotating
reference frame.

Solving these equations for φ gives the result for the desired heading:

φ = tan−1
(
µgω2R

)
(5)

Creating a more sophisticated model, accounting for the spin of the ball, is
ongoing work. However, this model showed promising results: Figure 6 shows this
algorithm in action in RoboCup 2014, where it enabled multiple goals. Further-
more, Section 6 shows significant improvement in our team using this method.

Fig. 6: Our robot using FDaT to shoot onto the opponent’s goal immediately
after intercepting it.

5 Ball tracking accounting for collisions

To track the state of the ball moving on the ground, we use an Extended Kalman
Filter (EKF). While the EKF provides us with a good prediction model for the
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ball while it is moving freely on the ground, its predictions are less useful when
the ball is about to collide with something else. This is because the EKF relies
on a linearization about the estimate of the state of the ball, but collisions are
highly nonlinear in nature.

Algorithm 1 Function to predict ball location accounting for collisions against
robots. Input: current ball state bt = (xb

t ,v
b
t ) estimate and covariance Σb

t ; time
∆t in the future to predict ball state. Output: ball state bt+∆t estimate and
covariance Σb

t at time t+∆t.

1: function PredictCollisions(bt,v
b
t ,∆t)

2: (bt+∆t, Σ
b
t+∆t)← PredictLinear(bt, Σ

b
t )

3: bs ← bt . record source state of current path segment
4: repeat . update bt+∆t while there are collisions
5: rc ← CollidingRobot(bs, bt+∆t)
6: if rc 6= ∅ then
7: (bs, bt+∆t)← Reflect(bs, t+∆t)
8: end if
9: until rc = ∅

10: return (bt+∆t, Σ
b
t+∆t)

11: end function

To mitigate this limitation of the EKF, we have augmented the prediction
used to update it to explicitly account for the ball colliding against robots on
the field. Algorithm 1 describes this process at a high level. Starting from the
linear prediction of the ball trajectory (line 2), the algorithm repeatedly updates
the trajectory while it finds collisions on the way (lines 4-9). For this, we find
whether the trajectory intersects any robots (line 5) assuming there is at most
one, and then reflect the trajectory about the point of collision (line 7). Figure 7
illustrates this process, which takes into account the geometry of the typical SSL
robot (flat in the front, circular around the body) as well as typical reflection
coefficients for its surfaces.

6 Simulation Experiments

To test the impact of our improvements on the game, we ran extensive ex-
periments in our PhysX-based simulator, in which robots are modeled at the
component level. The form of the inputs and outputs between the AI and the
simulator are identical to those between the AI and the real robots.

The experiments involved running multiple automated games between a stan-
dard CMDragons team, which was used during the SSL Finals of 2014, and vari-
ations of this team in which one element of the AI was modified. We tested each
condition on 50 games of 20 minutes each – the length of a standard SSL game.

It was only possible to conduct extensive experiments with little supervision
due to our automated referee [6]. The automated referee agent implements most
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bt

b0s

b0t+∆t

b1s

b1t+∆t

bt+∆t

Fig. 7: Application of Algorithm 1. The ball initial estimate is orange, and robots
are black. Red and green paths indicate detected collisions and the corrected
trajectory, respectively. Superscripts show the iteration of the loop in lines 4−9.

of the rules of the SSL and thus enables the games to be fully automated. Among
the rules that the automated referee enforces are the beginning and end of games,
appropriate restart of game once the ball goes out of bounds, detection of goals
scored, neutral restart if the game fails to progress for more than 10 seconds,
and detection of robot location-based infringements.

The standard AI of the 2014 Finals contained some of the innovations de-
scribed in this paper. In particular, it had Zone-based team coordination of
Section 2.1, the defense improvements of Section 3, and the tracker improve-
ments of Section 5, but not the Support Attacker of Section 2.2 or the dribbling
innovations of Section 4.

For the experiments below, we gathered the following statistics for each team
in an automated fashion, in roughly non-increasing order of importance:

Winning Percentage The percentage of games won.
Average Goals The average number of goals scored during a game.
Average Shots on Goal The average number of goal-directed shots that were

blocked by the opponent’s goalie or went into the goal.
Average Blocked Shots The average number of goal-directed shots that were

blocked by a robot that was not the opponent’s goalie.
Offense Percentage The percentage of active game time in which the ball was

on the opponent’s half of the field.

Below, we describe the variations that showed the most significant improve-
ment in our team. However, we have tried other variations and plan to use such
extensive simulation process in the future to select our standard team for 2015.

6.1 Standard team

First, we tested our standard team against itself. This experiment provided us
with initial results about our team’s performance, allowing us to test how vari-
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ations affect the performance of the standard team –for example, one variation
may be particularly effective at blocking the offense of the standard team, while
another may be effective at penetrating its defense. Table 1 shows the results of
the standard team against itself.

Team Win % Avg. Goals Avg. Shots on Goal Avg. Blocked Shots Offense %

Standard (a) 22% 0.34 0.96 42.34 49.55%

Standard (b) 16% 0.32 1.10 41.86 50.45%

Table 1: Results of matching our standard team against itself. As expected, the
statistics are approximately equal for (a) and (b). These statistics serve as a
standard behavior for our team.

6.2 Fast Dribbling and Turning (FDaT) experiments

To test the dribbling while turning innovations to our team, we only modified the
Primary Attackers – i.e, the robots that try to gain and maintain control of the
ball. Every time the ball is stationary, the Primary Attackers use the dribbling
while turning algorithm to align itself with its intended passing or shooting
target. Once the robot is aligned, it briefly drives forward until the ball’s velocity
along the axis perpendicular to the desired shooting direction is dissipated, and
proceeds to shoot. Table 2 summarizes the results for this test. FDaT shows a
significant improvement in the overall game development, showing better results
than the standard in all measures. In particular, we note that FDaT shows a
positive effect both offensively and defensively: not only does FDaT show higher
offensive performance than the standard team in Table 1, but the standard team
shows worse offensive performance than in the previous condition.

Team Win % Avg. Goals Avg. Shots on Goal Avg. Blocked Shots Offense %

Standard 08% 0.22 0.66 31.82 43.90%

FDaT 50% 0.84 1.76 38.80 56.10%

Table 2: Results of testing our dribbling while turning technique versus the
standard code of the 2014 finals. The code that uses our dribbling method out-
performs the standard significantly along every metric.

6.3 Zone-based coordination experiments

To test the Zone-based coordination, we compared the base team, which already
used zone-based coordination, to a similar team in which the teams involving
zone-based coordination were replaced with a play not involving zones. Instead,
this play had one Primary Attacker in charge of handling the ball, two robots
positioning to receive passes according to an evaluation function [5], two defend-
ing robots and a goalie. Table 3 summarizes the results for this test. Zone-based
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coordination significantly outperforms the team with no Zone-based coordina-
tion along the most important dimensions: Winning percentage, Goals and Shots
on Goal. We note that the average number of Goals and Shots on Goal for the
standard team are higher than those of Table 1, showing that the Zone-based
coordination also presents defensive benefits, as the standard team could defend
better against itself than the no-zone team could.

Team Win % Avg. Goals Avg. Shots on Goal Avg. Blocked Shots Offense %

No zones 04% 0.12 0.7 42.22 50.05%

Standard 38% 0.48 1.62 36.36 49.95%

Table 3: Results of testing Zone-based coordination versus a similar team that
did not rely on zones to attack. Zone-based coordination outperforms the team
with no zones on all metrics except for Blocked Shot.

7 Conclusion

This paper presents the recent innovations of the CMDragons team of the
RoboCup SSL. We focus on making the team more robust, by introducing the
notion of contingency options on offense, expanding the abilities of defense, mak-
ing our predictions of the state of the world more accurate and our skills more
reliable. These innovations have allowed us to stay competitive in the RoboCup
Small Size League, reaching the finals in the 2014 tournament. Furthermore, ex-
tensive simulation tests, enabled by our automated referee agent and a physics-
based simulator, have allowed us to test various innovations individually, and
will guide us in preparation of our 2015 team.
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