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1 Introduction

The team, RoboCanes, was incepted in January 2010 at the University of Miami
in the USA under the supervision of Dr. Ubbo Visser. The team has designed,
developed, and implemented its autonomous agent framework and software from
the ground up, and it has been evolved to a flexible research platform, that
has contributed to many publications over the years. In 2015, the team is lead
by Saminda Abeyruwan, who has participated in RoboCup teams since 2010.
Saminda is a final year PhD student and he contributes to RoboCanes teams in
the 3D Soccer Simulation League and in the Standard Platform League (SPL).

RoboCanes team members are Saminda Abeyruwan, Nasir Laskar, Joseph
Masterjohn, Kyle Poore, Andreas Seekircher, and Ubbo Visser. Saminda, An-
dreas, Nasir, Joseph, and Kyle are PhD students, and Ubbo is a faculty member
at the Computer Science Department of the University of Miami.

Saminda focuses on knowledge representation, localization (robot, ball, op-
ponents) and role formations, and has a good experience with filter techniques
and reinforcement learning techniques. Nasir, Joseph, and Kyle are new member
of the team working on algorithm development and also contribute to the SPL.
Andreas comes from the SSL team B-Smart and has done studies for his MSc
Thesis on the physical NAO. He has published a paper about his thesis entitled
“Entropy-based active vision for a humanoid soccer robot” which received him
the best paper award at RoboCup 2010 in Singapore. He is interested in motions
and motion learning on both the physical and the simulated NAO. Ubbo has
participated with the RoboCup community in various functions and teams since
2000. He started with (and currently still is in) the Soccer Simulation League.
He then founded more teams from the Bremen University in Germany (together
with Thomas Röfer): The SSL team B-Smart and the German Team in the
4LL (also together with H.-D. Burkhard, Humboldt University Berlin). Since
2008, he is affiliated with the University of Miami in the USA where he founded
RoboCanes.

The rest of the paper is organized as follows. First, we describe our research
interests and planned activities in Section 2. Second, in Section 3, we describe
relevant work and a list of our contributions to the 3D Soccer Simulation League.
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2 Research Interests and Planned Activities

Our main research activities are in the areas of: (1) behavior/situation recog-
nition, (2) real-time knowledge representation, (3) signal processing, (4) pre-
diction, (5) motion optimization, (6) control, and (7) real-time/approximate al-
gorithm development. We divide these research areas into two groups: (1) the
immediate/short-term activities that is planned to be addressed before RoboCup
2015, and (2) the long-term activities beyond the competition.

Besides working on the low-level skills that are described in Subsection 2.1
we like to apply plan recognition methods in order to bring valuable knowledge
into the behavior decision process. These efforts are presented in Subsection 2.2.
The real-time knowledge representation formalism is presented in Subsection 2.3.
The application of learning methods to interpret low-level skills as well as higher-
level behaviors is another research direction addressed by our team presented in
Subsection 2.4.

2.1 Humanoid Walking Engine and Special Actions

Since our team participates in the 3D Soccer Simulation and the SPL, it is
important to merge research efforts for the seperate leagues. The 3D soccer
simulation league can benefit from the experiences of the real robot humanoid
league. Later on, a sufficiently realistic simulation (e.g., the Webots simulator
that is tied with the physical NAO) can be used to ease certain aspects during
the development of real robots by (pre-) learning some skills or testing different
settings in the simulation that might be disadvantageous (and costly) for real
robots. We use the same implementations for both leagues as far as possible and
try to find methods to adapt motions to the behavior of different robots. This is
an important step for controlling the different heterogenious robot types in the
3D Soccer Simulation, as well as the slightly different physical robots (due to
hardware tolerance, different calibration, etc.) in the SPL.

Another goal we pursuit is creating a workflow for quickly generating reliable
motions, preferably with inexpensive and accessible hardware. Our hypothesis is
that using Microsofts Kinect sensor in combination with a modern optimization
algorithm can achieve this objective. We produced four complex and inherently
unstable motions and then applied three contemporary optimization algorithms
(CMA-ES, xNES, PSO) to make the motions robust; we performed 900 exper-
iments with these motions on a 3D simulated NAO robot with full physics.
We described the motion mapping technique, compared the optimization algo-
rithms, and discussed various basis functions and their impact on the learning
performance. Our conclusion is that there is a straightforward process to achieve
complex and stable motions in a short period of time [19]. Further optimizations
are planned as described in Section 2.4.

We created several motions as so called “special actions”, such as “getting
up” or “kicking the ball”. These motions are defined by a sequence of keyframes
containing joint angles. We use the code that generates these motions in both
leagues, the 3D simulation and SPL. However, the angles that define the motions
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need to be adapted for different robot types. In order to create a motion for the
simulated robot, we need a first version of the intended behavior. This can be
slow and unreliable, but it provides the initial parameters for the fine tuning
in a second phase. We applied automated optimization methods like genetic
algorithms [14, 15, 8] or reinforcement learning [29, 22] in order to identify good
settings for the different actions.

We plan to replace our current gait with a new walking engine that can also
be optimized for different robot types. In contrast to directly modifying joint
angles of a special action, we are planning to optimize the underlying models
used to generate the gait dynamically.

2.2 Behavior/Situation Recognition

A persistent research direction of our working group addresses the recognition of
intentions and plans of agents. Such high-level functions cannot be used before
a coordinated control of the agent is possible. Substantial advances have been
made in past few years experimenting and developing various techniques such
as logic-based approaches [26], approaches based on probabilistic theories [16],
and artificial neural networks [20]. The results have been partly implemented
in the current code. For a big portion of last year, the 3D server settings and
performance (especially for a larger number of robots) lowered the probability
of a fully functional behavior recognition and prediction method for a team
of agents. The latest implementation of SimSpark however has changed this
situation significantly so that we can follow this research approach as a short-
term goal.

Our approach to plan recognition is based on a qualitative description of
dynamic scenes (cf. [24, 25, 6, 13]). The basic idea is to map the quantitative
information perceived by the agent to qualitative facts that can be used for
symbolic processing. Given a symbolic representation it is possible to define
possible actions with their preconditions and consequences. In previous work
real soccer tactical moves as, for instance, presented in Lucchesi [10], have been
formalized [4]. As planning algorithms themselves are costly and thus hard to use
in a demanding online scenario as robotic soccer, previously generated generic
plans are provided to the agent who then can select the best plan w.r.t. some
performance measure out of the set of plans that can be applied to a situation.
As the pre-defined plans take into account multi-agent settings it is possible to
select a tactical move for a group of agents where different roles are assigned to
various agents. In the 2D simulation league and the previous server of the 3D
simulation league this approach has already been applied as behavior decision
component in some test matches [23, 4].

We developed a set of tools for spatio-temporal real-time analysis of dynamic
scenes that can be used in the 3D Simulation League. It is designed to improve
the grounding situation of autonomous agents in (simulated) physical domains.
We introduced a knowledge processing pipeline ranging from relevance-driven
compilation of a qualitative scene description to a knowledge-based detection
of complex event and action sequences, conceived as a spatio-temporal pattern
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matching problem. A methodology for the formalization of motion patterns and
their inner composition is defined and applied to capture human expertise about
domain-specific motion situations. It is important to note that the approach is
not limited to robot soccer. Instead, it can also be applied in other fields such
as experimental biology and logistics processes [26].

Our research is partly an application of the concepts developed in the par-
allel project “Automatic Recognition of Plans and Intentions of Other Mobile
Robots in Competitive, Dynamic Environments” (research project in the Ger-
man Research Councils priority program “Cooperating Teams of Mobile Robots
in Dynamic Environments”). It is necessary to identify a set of relevant strate-
gic moves that can be either applied by the own team (if the probability for a
successful move is high) or recognized from observing the behavior of the oppo-
nent team. The German Research Council (DFG) supported our research line
between 2001 and 2007 and invited us to submit ideas for further long-term re-
search ideas in that area. This clearly indicates the significance of our research
efforts.

2.3 Real-time Knowledge Representation

Creating, maintaining, and deducing accurate world knowledge in a dynamic,
complex, adversarial, and stochastic environment such as the RoboCup environ-
ment is a demanding task. Knowledge should be represented in real-time (i.e.,
within ms) and deduction from knowledge should be inferred within the same
time constraints. In [3], we proposed an extended assertional formalism for an
expressive SROIQVD Description Logic to represent asserted entities in a lat-
tice structure. This structure can represent temporal-like information. Since the
computational complexity of the classes of description logic increases with its
expressivity, the problem demands either a restriction in the expressivity or an
empirical upper bound on the maximum number of axioms in the knowledge
base. In this work, we assumed that the terminological/relational knowledge
changes significantly slower than the assertional knowledge.

Henceforth, using a fixed terminological and relational formalisms and the
proposed lattice structure, we empirically bound the size of the knowledge bases
to find the best trade-off in order to achieve deduction capabilities of an existing
description logic reasoner in real-time. The queries deduce instances using the
equivalent class expressions defined in the terminology. The experiments were
conducted in the RoboCup 3D Soccer Simulation League environment and pro-
vided justifications of the usefulness of the proposed assertional extension. We
have shown the feasibility of our new approach under real-time constraints and
conclude that a modified FaCT++ reasoner empirically outperforms other rea-
soners within the given class of complexity. Our next research objective is to use
our approach with incremental reasoning on a physical robot to model believes
and interpret entities in uncertain environments.
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2.4 Prediction and Control through Reinforcement Learning

Reinforcement learning is a popular method in the context of agents and learning
where a reward is given to an agent in order to evaluate its performance and thus,
(hopefully) learning an optimal policy for action selection [29, 22]. Reinforcement
learning has been applied successfully in robotic soccer before by other teams
(e.g., [12, 17, 9]). We have integrated a framework for reinforcement learning into
our agent where different variants like Q-Learning and SARSA have been used
(cf. [27, 28, 22]). We have published our current work on one of the Humanoids
2011 and 2012 workshops on soccer playing humanoids [18, 1] and submitted a
new paper for the AAMAS workshop ALA [2].

It is planned to apply reinforcement learning at two different levels: First of
all, we want to investigate how certain skills can be optimized by reinforcement
learning, e.g., in order to walk faster or to stand up in shorter time.

The second level where learning should be applied is located in the behavior
decision process. If it is known which strategic moves are possible the selection
of the preferable move should be learned by reinforcement learning methods.
The set of possible actions is determined by the applicable plans. The reward is
given with respect to the result of plan execution, e.g., if it failed or if it could
be finished successfully. The desired result would be an automatically optimized
high-level behavior based on a set of pre-defined plans. Different experiments
have to show how the performance of the team can be improved in matches with
identical or varying opponent teams.

The recent learning tasks that have been carried out in the RL framework is
based on linear function approximation, specially the penalty goal keep behavior.
The reinforcement learning framework is extended with GQ(λ), Greedy-GQ(λ),
and Off-PAC algorithms [11, 5]. These algorithms have been proven to converge
with linear function approximations and it is shown superior results in prediction
and control problems.

3 Relevant Work

This section provides a brief introduction to a list of our contributions to the
3D Soccer Simulation League. In Subsection 3.1 we describes the visualization
and debug tool that we have contributed to the league. Subsection 3.2 describes
an efficient implementation of a reinforcement learning software, and Subsection
3.3 describes SimSpark and ODE improvements.

3.1 Monitor and Debugging Tool

A former RoboCanes member, Justin Stoecker, has invented a new 3D soccer
server monitor (RoboViz) that runs platform independent. RoboViz is a soft-
ware program designed to assess and develop agent behaviors in a multi-agent
system, the RoboCup 3D simulated soccer league. It is an interactive monitor
that renders agent and world state information in a three-dimensional scene. In
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addition, RoboViz provides programmable drawing and debug functionality to
agents that can communicate over a network. The tool facilitates the real-time
visualization of agents running concurrently on the SimSpark simulator, and
provides higher-level analysis and visualization of agent behaviors not currently
possible with existing tools (Figure 1).

Fig. 1. RoboViz interface with debugging informa-
tion and 2D bird view

Features include visualiza-
tion and debugging (e.g., real-
time debugging; direct com-
munication with agents; se-
lecting shapes to be ren-
dered), interactivity and con-
trol (e.g., reposition of ob-
jects; switching game-play
modes), enhanced graphics (e.g.,
stereoscopic 3D graphics on
systems with support for
quad-buffered OpenGL; ef-
fects such as soft shadows and
bloom post-processing pro-
vide a visually enticing expe-
rience), easy use (e.g., simple controls, automatic connection to the server, plat-
form independency), and other features (e.g., various scene perspectives, logfile
viewing, playback with different speeds). A detailed description of RoboViz has
been published as a paper for the RoboCup Symposium [21].

3.2 Reinforcement Learning Library for Robotic Platforms

MC Sarsa MC TrueSarsa MC OffPac MC3 Gq SP Aac CG OffPac
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Fig. 2. Step update times in milliseconds. The thick
error bars (blue) show the step time for Intel ATOM,
while the thin error bars (red) show the step update
time for Intel CORE–i7.

Reinforcement Learning on
robotics platforms need effi-
cient implementation of the
state-of-the-art algorithms. RL-
Lib (http://rllib.saminda.
org) is an implementation
of incremental standard and
gradient temporal-difference
learning (GTDL) algorithms
for robotics applications us-
ing C++ programing lan-
guage. The implementation
of this highly optimized and
lightweight library is inspired
by the API of RLPark, which
is a library of temporal-
difference learning algorithms
implemented in Java. The library is tested on the Robocup 3D simulator and
on the NAO V4 with different configurations. Figure 2 shows the step time in
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milliseconds, i.e., the time an algorithm requires to update its parameters from
the observations, for a set of benchmark problems popular in RL literature [7].
We have considered two hardware platforms: 1) Intel CORE–i7 2.2GHz laptop;
and 2) Intel ATOM 1.6GHz CPU available on NAO humanoid robot.

3.3 SimSpark and ODE improvements in 3D Simulation League

Sander van Dijk (Team Boldhearts) and our team RoboCanes have developed a
new SimSpark and ODE version. This work is supported by a RoboCup Feder-
ation Grant and is focussed on the following goals:

1. Improve stability: fix bugs and increase robustness of simulator.
2. Enable starting multiple instances on a single machine or over a network:

make it possible to easily run multiple simulations in parallel. The result has
been at the Regional Opens in Germany and Iran in 2011 as well as used
during the World Cup 2011 in Istanbul.

3. Enhance run-time control: give the possibility to alter any simulation detail
at run-time, alleviating need to constantly restart the system.

4. Develop graphical utility tools: facilitate setting up a batch of experiments.

Sander has announced some of the developments in the mailing list.
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