FUT-K Team Description Paper 2015

Masato Ishitaka, Yuya Kitajima, Kosuke Onda, Kento Ozaki,
Kazutomi Sugihara, and Teruya Yamanishi

Department of Management Information Science, Fukui University of Technology
Gakuen, Fukui 910-8505, Japan

Abstract. This paper describes the changes of the structure of the pro-
graming source and the kick motion followed walking without pause af-
ter approaching the ball for agents of FUT-K in the simulation league of
RoboCup 3D Soccer. In addition, it is mentioned on our new kick mo-
tion over a long distance obtained using a method of Covariance Matrix
Adaptation Evolution Strategy.

Key words: Program structure, Kick motion, Long Distance kick

1 Introduction

FUT-K that is mainly composed of undergraduate students of Fukui University
of Technology in Japan has been organized since fall 2007. At the beginning
of inauguration, we have participated in two leagues, namely one is RoboCup
Soccer 3D Simulation, and another RoboCup Soccer Mixed Reality. Since the
mixed reality league was withdrawn, we are concentrating operations on 3D
simulation league at present.

The purposes of our team are to grow knowledge and experience of the
computer language and the information science through applying themselves
to RoboCup Soccer. Though almost members of our team are unskilled at pro-
gramming yet, we believe that now our team is developing with getting advice
from other teams.

We made six appearances in the world competition from RoboCup 2009 in
Graz to RoboCup 2014 in Joao Pessoa, and could get to a lot of things about
soccer strategies and techniques of the movements for humanoid robot as the
3D soccer agent from these competitions.

In this paper, we introduce our activities for developing the 3D soccer agent
of this year as follows:

— Reconsideration of the overall program cord to make it easy to expand,
— Development of kick motion without pause after approaching the ball,
— Development of kick motion over the long distance.

The details are explained in the following sections.

2 Refactoring of Program Code on Agents

As the previous our program code on the agent has concentrated the functions at
only one class, it is difficult to understand what kind of function is where in some
class. We try to refactor our agent program by using Singleton pattern in order
to make it easy to understand. The singleton is one of the design pattern that it
restricts generation of the instance to be only one, and offers the global access to
a calling from other classes[1]. For RoboCup Soccer 3D Simulation, the soccer
agents decide the next behavior by basing information from the soccer server
computer. So, arguments to turn over the object with the information from the
soccer server computer to the member function of each class are needed when
the information from the soccer server computer is required, if the singleton is
not used. We modify the classes dealing with information used very much from
the server to the singleton classes in oder to decrease such arguments. As result,
we can obtain the information of the soccer server computer by using the static
function in the singleton class without turning over the object between classes.

There are mainly two kinds of classes: one is the process on data from a
soccer server, and other decides the information sending to a soccer server. We
show classes processing the data receiving from the server and the data sending
to the server in Tables 1 and 2, respectively.

In this section, we explain classes constructed by improving our program
structure.

Table 1. The characteristic features of new classes processing data receiving from the
soccer server in our program.

Class name Characteristic features
RcssserverSocket Connection of the server and sending and receiving of
data.
Parser Dividing data received from the server into character
strings.
RawStorage Normalization of the character strings divided by Parser

class, namely numerical conversion, boolean transforma-
tion, and so on.

AgentState Providing information of agent self.
WorldState Providing information of the present game.
FieldState Providing information of objects on the soccer field ex-

cept for data of AgentState class.
StrategyInformation Providing useful information on next actions of agents.

2.1 Class of data processing from sever

In our program, new classes have been constructed as routines processing data
from the soccer server computer, which are named as “RcssserverSocket”, “Parser”,

Table 2. The characteristic features of new classes processing data sending to the
soccer server in our program.

Class name Characteristic features
Agent Decision on basic motions of a agent.
Strategy Decision on ways of walking on a agent.
JointController Decision on angular speeds for joints of a agent.
Effector Stocking the information sending to the server, and send-
ing to the server.

“RawStorage”, “AgentState”, “WorldState”, “FieldState”, and “StrategylInfor-
mation”. These classes are singleton ones except for RessserverSocket class. Also,
the process of data by these classes are imaged at Fig.1.

Server Data

RessserverSocket

Server Message

Parser

Parsed String

RawStorage

Normalized Data

AgentState

[WorldState] [FieldState]

StrategyInformation

Information Classes

Processed Data

Fig. 1. The image on the processing data in new classes in our program.

We can take data processed on the soccer server by calling Information classes
except for classes processing data receiving from the server. It is mentioned on
Information classes by the next subsection for details.

2.2 Class of data sending to sever

Agent, Strategy, JointController, and Effector classes determine to select infor-
mation in order to send the soccer server. Among these classes, JointController

class is only a singleton class. The relationship between each class is shown in
Fig.2.

From Fig.2, one can see that Agent class plays a central role in updating Infor-
mation classes by using JointClontroller, Effector, and Strategy classes. Agent
class gives instructions to JointController class setting the angular speeds for
joints of the agent, and Effector class gets the information on their angular
speeds from JointController one and sends to the server. As results, agent class
carries the role of determining processes except the agent’s motions about walk-
ing, and strategy class deals with processes on walking motions of the agent.

Normalized Data

Get ‘

JointController

Effector

g

Agent Message

Strategy

Fig. 2. The relationship between each class determining data sending to the server.

3 Creation of kick motion without pause

Since previous our TDP, namely FUT-K Team Description Paper 2014 in Joao
Pessoa, has been discussed on the kick motion without pause after approaching
the ball as future perspective, we attempt to develop a new kick motion with
quick and stable. So, we impose the following rules in order to make the kick
motion of the agent like persons approaching the ball and kicking:

1. Before kicking at the ball, the agent does not stop with feet together just
front of the ball,

2. It is not reversed until the agent finishes kicking the ball.

Using ForceResistance Perceptor in the foot and adjusting the center of mass
for the agent, we succeeded in making of the kick motion without pause by
synchronizing the forward motion and the kick motion. The result is shown in
Table 3.

From Table 3, we find that the agent can kick at the ball by quick kick motion
without the rollover for five tries. However, the carry of the ball becomes short
as the compensation of such quick and stable kick motion.

Table 3. Results of comparison of new kick motion with old one. Here the motion time
means the time until the ball is kicked after the pivot leg of the agent lands

New kick motion Old kick motion
Carry of the Motion Rollover Carry of the Motion Rollover
ball [m] time [s] ball [m] time [s]
1st try 3.08 0.40 No 6.57 2.34 Yes
2nd try 2.14 0.36 No 6.48 2.34 Yes
3rd try 2.51 0.40 No 5.99 2.34 Yes
4th try 2.56 0.36 No 6.46 2.34 Yes
5th try 2.68 0.42 No 6.48 2.34 Yes
Ave. 2.54 0.39 No 6.40 2.34 Yes

4 Creation of kick motion over the long distance

At Table 3 in previous section, the kick motion before development flies the ball
for only 6.4 meters. So we attempt to develop the kick motion over the long
distance, where it does not care that the agent does stop with feet together
just front of the ball before kicking at the ball. In this section, the algorithm of
the kick motion over the long distance is explained, and the way of search on
parameters required in the algorithm is discussed.

4.1 Simple algorithm of kick motion over the long distance

We attempt to create the kick motion over the long distance by setting the target
angle, the angular speed and the time to move the joint. Then, we can a select
relative speed or a fixed speed for the angular speed; the angular speed is decided
by the difference between the target angle and the present angle for the relative
speed, the angular speed is not changed for the fixed speed. This algorithm can
be written in a XML form, and is described as shown in Fig. 3, for example.

<sequence name="sample">
<motion name="right_up" time="50">
<move id="hj1" degree="120.0" speed="0.075" type="0"/>
<move 1d="hj2" degree="30.0" speed="0.073" type="0"/>
</motion>
<motion name="left" time="100">
<move id="hj1" degree="-120.0" speed="1.0" type="17/>
</motion>
</sequence>

Fig. 3. Simple algorithm of new kick motion over the long distance written by XML.

The algorithm described by XML in Fig. 3 means that Type 0 is setting the
relative speed, or Type 1 does the fixed speed. First of all, for 50 frames, the

joint “hj1” moves to 120 degrees with the relative speed, and “hj2” moves to 30
degrees with one. After that, for 100 frames, “hj1” moves to —120 degrees with
the fixed speed, and “hj2” stops.

By derive the algorithm on new kick motion over the long distance, we have
to generate parameter from stopping of the agent to a close of raising of the leg.
Fortunately, because it could be fixed from stopping of the agent to the place
where the leg is lifted a little, the parameter could be reduced. After the result
of the trial and error, the amount of the parameters becomes to be 60, which
consist of the target angles and the angular speed.

4.2 Parameter search by CMA-ES

According to an idea[2], we use Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) method for parameter search. CMA-ES is the optimization al-
gorithm which applies a dispersion covariance line to an evolution strategy. The
fitness function is defined as follows:

fit | ballLocationX for success , (1)
LoeX = —1 otherwise .

In case of success, the agent raises one leg and the ball flies to the front, and
the fitness value is -1, otherwise. The X-Location of the ball, not the distance
of the ball, is used because we want the agent to shoot the ball in the direction
of forward, exactly. By taking 200 as the population size, the average and the
maximum change performed repeatedly 400 times is shown on Fig. 4.

CMA-ES Laerning Graph

W o

— Average

<t

2w
<>

Ball Location X
-
=T

<

o 40 80 120 160 200 240 280 2320 360 400
Iteration

Fig. 4. The result of kick motion over the long distance by CMA-ES method.

This result is similar to UTAustinvilla’s CME-ES learning curve[2]. At 400
times, the maximum of the fitness value becomes about 20 m.

5 Conclusions and Future Works

By refactoring our program, the movement of a agent has not be improved, but
we expected that bugs was able to be suppressed during our developing agent
and that the efficiency of coding was increased.

The kick motion of the agent without pause was convenient because it was
put in a goalpost from the nearby distance. At present, as it is not introduced
such kick motion into the agent, we guess that the score rate of our team is
risen. In future works, we will attempt to improve that distance because the
flying distance of the ball is still short for this kick motion.

Also, we succeeded in development of a long distance kick. By means of this,
all the agents were able to shoot into goalpost from the far distance. But if it
was not the right location, the agent failed in a kick. Even if there are some
errors, we want the agents to succeed in the long distance kicking.

Acknowledgements

This work is supported in part by research grants from Fukui University of
Technology.

References

1. Yoshihara, H.: Sec. II Singleton in Reverse dictionary on design patterns
(in Japanese), http://www.nulab.co.jp/designPatterns/designPatterns2/
designPatterns2-1.html (2015).

2. Depinet, M., MacAlpine, P., and Stone, P.: Keyframe Sampling, Optimization, and
Behavior Integration: Towards Long-Distance Kicking in the RoboCup 3D Simu-
lation League, RoboCup2014, Robot Soccer World Cup XVIII, Lecture Notes in
Artificial Intelligence, Springer Verlag, Berlin (2015).

