
ITAndroids 3D Soccer Simulation
Team Description Paper for RoboCup 2015

Fábio Mello, Marcos Maximo, Mateus Coelho, and Samuel Pinto

Technological Institute of Aeronautics,
São José dos Campos, São Paulo, Brazil

fabio.mello50@yahoo.com.br

{maximo.marcos,mateuscoelho2009,sacepi}@gmail.com

itandroids-soccer3d@googlegroups.com

http://www.itandroids.com/

Abstract. ITAndroids was reestablished in mid-2011 by undergradu-
ate students at the Technological Institute of Aeronautics. In the past,
ITAndroids was a successful robotics competition group, winning several
competitions in Brazil and Latin America. Unfortunately, the team dis-
mantled and the expertise was lost over years of inactivity. After reestab-
lished, the team has already won several competitions, especially in Latin
America. This paper describes our developments in 3D Soccer Simula-
tion, including development of an ZMP based omnidirectional walking
engine, a kick algorithm, a positioning mechanism based on Delaunay
Triangulation and use of particle filters for robot localization. Moreover,
we discuss our plans for future development.

1 Introduction

ITAndroids is a robotics research group at Technological Institute of Aeronau-
tics. The group was founded in 2006 by Jackson Matsuura. As required by a
complete endeavor in robotics, the group is multidisciplinary and contains about
30 students from different undergraduate engineering courses.

In the last 3 years, we have achieved good results in competitions, especially
in Latin America:

– 10th place in RoboCup 2D Soccer Simulation in RoboCup 2012;
– 1st place in RoboCup 2D Soccer Simulation in Latin American Robotics

Competition (LARC) 2012;
– 2nd place in RoboCup 3D Soccer Simulation in LARC 2012;
– 3rd place in IEEE Humanoid Robot Racing in LARC 2012;
– 12th place in RoboCup 2D Soccer Simulation in RoboCup 2013
– Top 12 in RoboCup 3D Soccer Simulation in RoboCup 2013;
– Top 12 in RoboCup 3D Soccer Simulation in RoboCup 2013;
– 1st place in RoboCup 2D Soccer Simulation in Brazilian Robotics Competi-

tion (CBR) 2013;
– 2nd place in RoboCup 3D Soccer Simulation in CBR 2013;



2 Authors Suppressed Due to Excessive Length

– 1st place in RoboCup 2D Soccer Simulation in LARC 2014;
– 2nd place in RoboCup 3D Soccer Simulation in LARC 2014;
– 3rd place in RoboCup Humanoid KidSize in LARC 2014.

Our progress was largely supported by RoboCup community. Our current
code is based on magmaOffenburg Agent-Framework (magma-AF) [1]. Many of
our ideas were inspired by other teams work. Our first omnidirectional walk
mechanism developed by our team was based on UT Austin Villa [2]. Also,
we adapted a positioning mechanism developed by the 2D Soccer Simulation
team HELIOS [20]. Furthermore, we have implemented a particle filter for robot
localization.

This paper presents our recent development efforts. Sec. 2 describes our most
important attempts in building a fast and stable walk. Sec. 3 presents an algo-
rithm for kicking where we use the same balancing strategy that we use for
walking. Sec. 4 presents a positioning method based on Delaunay Triangulation
(DT) [24] that was adapted from the 2D Soccer Simulation team HELIOS. Sec.
5 explains how our robot localizes itself in the field. Finally, Sec. 6 concludes the
paper and shares our vision for future implementation.

2 Walking

In 3D Soccer Simulation league, most actions of the robots are highly dependent
on its ability to walk. Therefore, a great amount of our team efforts was focused
on walking. In order to find a good walking method, several ideas were tested.
Our lastest walking models are described in this section.

2.1 Parametric Omnidirectional Walk

One of the walking methods tested by our team was based on [2]. The walking
engine developed used a similar parametrization for the trajectory. However,
our development was focused on being able to achieve a fast and stable walking
without the need of using much computational resources during the optimization
process.

On the optimization of the parameters of a walking trajectory, one of the
biggest problems is the need of adapting the parameters to different goals. The
two main goals in this task are walking as fast as possible and being as stable as
possible. Since the combination of more than one goal on the same evaluation
function commonly does not provide a good tradeoff between these goals, the
problem was divided in two coupled optimization problems with different sets of
parameters to be optimized and different goals for each problem.

The first problem was maximizing the stability of the movement keeping the
speed constant. However, in order to take into account the influence of the size
of the step in the movement stability, we kept the ratio between the size and
the duration of the step constant and not both of these parameters. The second
problem was to increase the speed of the robot as much as possible without
making the movement too unstable.



Title Suppressed Due to Excessive Length 3

The major advantage of this aproach is that, using each parameter to opti-
mize the feature of the walking that is more influenced by it, the influence of
a change on a parameter is noticed earlier; thus, allowing a faster optimization
process. For instance, the height to which the moving foot of the robot is lifted
during a step influences the stability of the movement, but it does not influence
the speed of the movement unless the feet of the robot are sliding on the floor.
Therefore, a evaluation function that considers both the speed and the stability
of the movement might fail to notice this change in the stability while it would
be much easier to notice it if considering only the stability of the robot.

In the end, the optimization was composed of two alternating steps, one mak-
ing the movement as stable as possible while keeping the speed constant and the
other one increasing the speed as much as possible while keeping the other pa-
rameters constant. Using this strategy, it was possible to manually tweak the
parameters and achieve a reasonable fast and stable motion. In the future, we
intend to adapt this strategy to a method for automatically setting the param-
eters without the need of much computational effort.

2.2 ZMP Based Omnidirectional Walking Engine

In general terms, the walking engine follows the flux presented on Figure 1. The
input to the algorithm is the desired velocity v = [vx, vy, vψ]T with respect to
the local coordinate system of the robot. Then, at the beginning of a new step,
poses for the torso and the swing foot are selected for achieving the expected
displacement at the end of the step. So, a trajectory for the center of mass
(CoM) that keeps the Zero Moment Point (ZMP) at the center of the support
foot is computed by using an analytic solution of the 3D-LIPM equation. We
approximate the CoM by a fixed position in the torso. The trajectory of the swing
foot is obtained by interpolating between the initial and final poses of this foot.
Finally, joints angles are calculated through Inverse Kinematics (IK) considering
the poses of the support and swing feet. Note that the module “Next Torso and
Swing Poses Selector” is called once for step, while the others are executed at
the update rate of the joints.

Next Torso
and Swing
Foot Poses

Selector

CoM
Trajectory
Generator

Swing Foot
Trajectory
Generator

Feet Poses
Calculator

Inverse
Kinematics

Solver
Joints

v =

vxvy
vψ



Fig. 1. Walking Engine overview.



4 Authors Suppressed Due to Excessive Length

A humanoid robot must satisfy dynamical constraints to remain stable. More-
over, the robot geometry imposes constraints: leg reachability is limited by leg
physical dimensions and we also do not want movements where the legs collide.
To achieve dynamic stability, our strategy is to generate a CoM trajectory that
keeps the ZMP at the center of the support foot during single support. We may
at least restrict the initial and final positions of this CoM trajectory, as will be
explained below. Hence, our requirement is to have the robot matches the om-
nidirectional model only at the beginning and at the end of the step. Assuming
constant v, we may compute the expected pose after a step duration T :

x(t+ T )
y(t+ T )
ψ(t+ T )

 =


x(t) + 2 vxvψ

sin
(
vψT

2

)
cos
(
ψ(t) +

vψT

2

)
− 2

vy
vψ

sin
(
vψT

2

)
sin
(
ψ(t) +

vψT

2

)
y(t) + 2 vxvψ

sin
(
vψT

2

)
sin
(
ψ(t) +

vψT

2

)
+ 2

vy
vψ

sin
(
vψT

2

)
cos
(
ψ(t) +

vψT

2

)
ψ(t) + vψT


(1)

For our multibody humanoid robot, it is convenient to select a body part as
representative of the whole robot motion: we choose the torso for this. Thus, at
the beginning of a new step, given the current torso and swing foot poses, an
algorithm plans the torso and swing foot poses at the end of the step to make
the torso arrive at the pose dictated by Equation (1) while trying to satisfy
geometric constraints. This algorithm is based mainly on heuristics.

We still need to move the robot without losing balance. To reason about
the robot dynamics, we approximate it using the 3D Linear Inverted Pendulum
Model (3D-LIPM) [12]:

xZMP = xCoM −
zCoM
g

ẍCoM (2)

Where xZMP = [xZMP , yZMP ]T is the ZMP position, xCoM = [xCoM , yCoM ]T

is the CoM position, zCoM is the CoM height, and g is the acceleration of gravity.
The ZMP is kept at the center of the support foot during single support and
moves it from the current support foot to the next one during double support.

However, the difference between the multibody humanoid robot dynamics
and 3D-LIPM and perturbations, such as external forces and uneven terrain,
will prevent the ZMP to match the reference. The robot is able to accommo-
date ZMP error up to the margins of the support polygon without tipping,
which is often sufficient to allow open-loop walking if no strong perturbations
are present. Nevertheless, closed-loop balancing strategies are useful to make the
walking more robust. We have tried using the angular velocities measured from
the gyrometer to stabilize the walk, which proved effective.

Unfortunately, due to lack of time, our current code still uses the walking
engine described in the previous subsection. Nevertheless, we have developed the
walking engine explained in this section for our Humanoid KidSize robot. This
engine have proved to work adequately both in simulation and in the real robot.
Thus, we expect to have this new walking engine integrated with our Soccer 3D
code long before the competition.



Title Suppressed Due to Excessive Length 5

3 Kick

We consider that kicking is a motion where the biped starts in a stand position,
kicks the ball and returns to the same stand position. Moreover, during kick-
ing, one foot is taken off the ground, henceforth referred as kicking foot, while
the other one is kept on the ground as support foot. This description suggests
breaking the motion in phases, thus we divided it in the following 5 phases:

– Phase A: the robot moves the ZMP to the center of the support foot to allow
the kicking foot to be taken off the ground in the next phase without balance
loss.

– Phase B: the robot takes the foot off the ground and position it to prepare
for kicking the ball.

– Phase C: the robot kicks the ball.
– Phase D: the robot places the kicking foot on the ground.
– Phase E: the robot goes back to the stand position (ZMP is moved to the

torso projection on the ground).

During phases B, C and D, the robot is in single support, so stability is
of concern. Based on this perception, we use the same algorithm we used to
balance walking for balancing kicking. Again, we constraint the CoM to maintain
a constant height zCoM , so the dynamics becomes linear.

The current kick integrated in our code is the one from the base team
(magma). We expect to implement the algorithm explained in this section soon.

4 Positioning Using Delaunay Trangulation

A technique popularized by Helios in the 2D Soccer Simulation League, the
Delaunay Triangulation Positioning [20] consists of hard-coding the players’s
positions for a certain number of ball positions, and then computing the team’s
positioning for any ball position through a 2D linear reduction based on the
formations for the known ball positions. Our team adapted this idea to the 3D
Simulation.

More specifically, the triangulation works on a set of possible positions for
the ball, each of which containing the ideal positions for the players if the ball
happens to be there. The Delaunay Triangulation is such that all circumcircles
are empty, the resulting grid of triangles produces a graph covering the whole
field. In order to compute the triangulation, we used the library [22].

After the triangulation is done, we can calculate the linearization parameters
in order to smoothly adjust the positions in which the player will be. To do so,
we use for each triangle a linear funtion of the ball position to determine the
position in which a given player will be if the ball is inside that triangle. In order
to determine the linear function, it is stated that, in the vertices, all players
should position as asigned. This way, it is possible to smoothly interpolate the
positions assigned to each player to an arbitrary ball position.



6 Authors Suppressed Due to Excessive Length

Until now, our efforts were mainly focused on constructing a parser com-
patible to the formation editor released by Helios in the 2D Soccer Simulation
League [23] and implementing the linear functions to perform the interpolation.
Therefore, we are currently using the same formation configuration used in agent
2d [6]. In the future, the team intends to adapt the positioning in order to better
fit the specific aspects of the 3D Soccer Simulation League. Also, the team aims
to use this thecnique to predict the positioning of other teams as already done
by some teams in the 2D Soccer Simulation League [20, 21].

5 Localization

5.1 Stochastic Modeling

The robot state s = [x y ψ] can be written in as a function of its previous state,
as in following: xkyk

ψk

 =

xk−1yk−1
ψk−1

 +

ukxuky
ukψ

 (3)

In which uTk is a multivariate gaussian vector with mean [µx µy µψ], given
by the odometry information, and covariance matrix σk.

The vision returns information about landmarks observed. The probability
density function associated to the robot observation of the point a associated to
the landmark m at time k, pma,k(z0|s0:k), is a multivariate gaussian function with
mean µmpoint a,k and covariance matrix σmpoint a,k.

5.2 Particle filters

The localization is responsible for recursively estimating the robot‘s state in the
field, i.e. the vector s = [x y ψ]. However, the robot is not able to observe directly
its state. Therefore, in order to estimate its state, informations from the odom-
etry and from the computational vision are merged using a stochastic algorithm
known as particle filter. This algorithm aims to approximate the probability den-
sity distribution function by the density of a set of discrete hipothesys named
particles. Each particle j can be understood as a hypothesys [x(i) y(i) ψ(i)]. This
algorithm was implemented as described in [11] and is explained in algorithm 1.

The mathematical model described in the Stochastic Modeling subsection
was simulated in a simulator built using Matlab. This simulator is a tool for
debuging localization algorithms. It was implemented to simulate the behavior
of the localizations signals considering a 2D environment. It simulates the robot’s
kinematics and observations, including the randomness. The simulator also has
a MEX interface, therefore it can be used to test both MATLAB localization
code and C++ code. The fig. 5.2 shows the simulator.

Then, the obtained signals were processed using the techniques previously
described. 200 particles were used and the results have shown that the algorithm
delivered very accurated results, as shown in fig. 5.2.



Title Suppressed Due to Excessive Length 7

begin
for i = 1, ..., Np do

Draw s
(i)
k with p(s0|z0);

w
(i)
k ←

1
Np

;

end
for every k do

for i = 1, ..., Np do

Draw s
(i)
k with p(sk|s(i)k−1);

ŵ
(i)
k ← w

(i)
k−1p(zk|s

(i)
k );

end

B ←
∑Np
k=1 ŵ

(i)
k ;

for i = 1, ..., Np do

w
(i)
k ←

ŵ
(i)
k
B ;

end

Neff ← 1∑Np
k=1

w
(i)
k

2 ;

if Neff > 0.4 then
Ressample;

end

end

end

Algorithm 1: Localization Algorithm.

Fig. 2. Localization simulator

6 Conclusions and Future Work

This paper presented the latest efforts of team ITAndroids 3D. In the last 3
years, we have won several competitions, especially in Latin America.

Our fast progress was highly supported by the RoboCup community: our cur-
rent code is based on magma-AF base team [1] and most of our implementation
was greatly inspired by other teams work [2, 20, 15–19].



8 Authors Suppressed Due to Excessive Length

Fig. 3. Localization results.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

x(cm)

y
(c

m
)

Localization simulation

 

 

Estimated position

Real position

For immediate work, we expect to focus on implementing and tuning some of
the methods described in this paper. We expect to accomplish this long before
RoboCup. Moreover, since we are reaching a state where our low level skills are
reliable, we intend to start focusing in our decision making, which is currently
very simple.

References

1. magmaOffenburg Agent-Framework, 2011, online, avaliable at: http://robocup.
hs-offenburg.de/downloads/magma3D-2011Release.tar.gz, consulted on Febru-
ary 2012.

2. MacAlpine P., Urieli, D., Barrett, S., Kalyanakrishnan, S., Barrera, F., Lopez-
Mobilia, A., Ştiurcă, N., Vu, V., Stone, P.: UT Austin Villa 2011 3D Simulation
Team Report. Technical Report, The University of Texas at Austin, Department
of Computer Science, AI Laboratory (2011)

3. Haider, S., W., M.-A., Raza, S., Johnston, B., Abidi, S., Sharif, U., Raza, A.:
Karachi Koalas3D Simulation Soccer Team, Team Description Paper for World
RoboCup 2012 (2012)

4. Yang, L., Chew, C.-M., Zielinska, T., Poo, A.-N.: A Uniform Biped Gait Generator
with Offline Optimization and Online Adjustable Parameters. In: Proceedings of
the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4435–4440 (2006)

5. Vukobratovic, M., Borovac, B., Surdilovic, D.: Zero-Moment Point Proper Interpre-
tation and New Applications. In: Proceedings of the 2nd IEEE-RAS International
Conference on Humanoid Robots, pp. 237–244 (2001)

6. agent2d, http://pt.sourceforge.jp/projects/rctools/downloads/51943/

agent2d-3.1.0.tar.gz/



Title Suppressed Due to Excessive Length 9

7. Akiyama, H., Shimora, H.: HELIOS2010 Team Description (2010)
8. Bai, A., Zhang, H., Lu, G., Jiang, M., Chen, X.: WrightEagle 2D Soccer Simulation

Team Description 2012 (2012)
9. http://wiki.processing.org/w/Triangulation

10. fedit2-0.0.0, 2010, online, avaliable at: http://pt.sourceforge.jp/projects/

rctools/downloads/48791/fedit2-0.0.0.tar.gz/, consulted on February 2012.
11. M. G. S. Bruno. Sequential Monte Carlo Methods for Nonlinear Discrete-Time

Filtering. Technological Institute of Aeronautics.
12. S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. The 3D Linear

Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Genera-
tion. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems, October 2001.

13. Mello, F., Muxagata, E., Maximo, M.: ITAndroids 3D Soccer Simulation Team
Description 2013 (2013).

14. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo Localization for Mo-
bile Robots. In: IEEE International Conference on Robotics and Automation
(ICRA’99) (1999)

15. Shafii, N., Aslani, S., Nezami, O.M., Shiry, S.: Evolution of Biped Walking Us-
ing Truncated Fourier Series and Particle Swarm Optimization. In: Baltes, J.,
Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009, pp. 344–354
(2010)

16. Shafii, N., Khorsandian, A., Abdolmaleki, A., Jozi, B.: An Optimized Gait Gener-
ator Based on Fourier Series Toward Fast and Robust Biped Locomotion Involving
Arms Swing. In: Proceedings of the IEEE International Conference on Automation
and Logistics (2009)

17. Shafii, N., Reis, L.P., Lau, N.: Biped Walking Using Coronal and Sagittal Move-
ments Based on Truncated Fourier Series. In: RoboCup 2010: Robot Soccer World
Cup XIV, Lecture Notes in Computer Science, pp. 324–335 (2010)

18. Hester, T., Stone, P.: Negative Information and Line Observations for Monte Carlo
Localization. In: IEEE International Conference on Robotics and Automation
(ICRA’08) (2008)

19. Coltin, B., Veloso, M.M.: Multi-Observation Sensor Resetting Localization with
Ambiguous Landmarks. In: Proceedings of AAAI’11, the Twenty-Fifth Conference
on Artificial Intelligence, San Francisco, CA (2011)

20. Akiyama, H., Shimora, H.: HELIOS2010 Team Description (2010)
21. Bai, A., Zhang, H., Lu, G., Jiang, M., Chen, X.: WrightEagle 2D Soccer Simulation

Team Description 2012 (2012)
22. http://wiki.processing.org/w/Triangulation

23. fedit2-0.0.0, 2010, online, avaliable at: http://pt.sourceforge.jp/projects/

rctools/downloads/48791/fedit2-0.0.0.tar.gz/, consulted on February 2012.
24. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-

try: Algorithms and Applicaitions. Springer-Verlag (2008)


