
Cerberus’15 RoboCup SPL Team Description

H. Levent Akın, Okan Aşık, Binnur Görer, Bahar İrfan, Metehan Doyran, Berna
Erden, Kadriye Yasemin Usta

Boğaziçi University, Department of Computer Engineering
34342 Bebek, Istanbul, TURKEY

{akin, okan.asik, binnur.gorer, bahar.irfan, metehan.doyran, berna.erden6,
kadriye.usta}@boun.edu.tr

1 Introduction

The Cerberus team made its debut in RoboCup 2001 competition. This was the first
international team participating in the league as a result of the joint research effort of
Boğaziçi University (BU), Istanbul, Turkey and Technical University Sofia, Plovdiv
branch (TUSP), Plovdiv, Bulgaria. The team competed in Robocup 2001-2014 except
the year 2004. Since 2005, Boğaziçi University is maintaining the team. In 2005, despite
the fact that it was the only team competing with ERS-210s (not ERS210As), Cerberus
won the first place in the technical challenges.

Through the years, the members of the team have done many PhD, MS, BS Thesis
studies related to SPL and published more than 40 papers in journals and international
conferences, including the RoboCup Symposia 1.

Until 2015, we have been developing all required software modules as a part of
general robotics framework in our lab. However, recently team has focused on providing
hands-on experience for undergraduate students. Therefore, as a result of this effort, this
year we started to use B-Human code architecture and adapted our cognition code base
for B-Human infrastructure [1].

The organization of the rest of the paper is as follows. In Section 2, the details of the
vision module are provided. Self localization method is described in Section 3. Various
approaches we use for the planning module are described in Section 4. Finally, We also
present our coach robot in Section 5.

2 Vision

2.1 Image Processing and Perception

The purpose of the perception module is to process a raw image and extract available
object features from it. The input to the module is the image in YUV422 format and the
output is the range and bearing values of the perceived objects and landmarks.

1 The full list of Cerberus publications are available here: http://robot.cmpe.boun.edu.tr/ cer-
berus/wiki/doku.php/publications



Color Quantization We previously utilize a Generalized Regression Neural Network
(GRNN) [2] for mapping the real color space to the pseudo-color space composed of
a smaller set of pseudo-colors, namely, white, green, blue, orange, red, and “ignore”.
However, due to high training time, we switched to decision tree trained using labeled
images in RoboCup 2014. However, the success of decision tree is generally deter-
mined by the chosen labeled images which cannot be guaranteed on competition site.
Therefore, we use color table approach developed by B-Human team [1]. This approach
creates a pre-calculated color table by color thresholding in HSV color space.

Scanline Based Perception Framework Considering that the cameras of the Nao
robots provide higher resolution images and the processors are slower, it becomes in-
feasible to process each pixel to find the objects of interests in the image due to com-
putational efficiency and real-time constraints. Therefore, scan lines are used to process
the image in a sparse manner, hence speeding up the entire process.

The process starts with the calculation of the horizon based on the pose of the robot’s
camera with respect to the contact point of the robot with the ground, that is the base
foot of the robot. After the horizon is calculated, scan lines that are 5 pixels apart from
each other and perpendicular to the horizon line are constructed, such that they originate
on the horizon line and terminate at the bottom of the image. The first step after that is
to scan through these scan lines to find where the green field starts, which is done by
checking for a certain number of consecutive green pixels along the line. Of course that
results in a green region where all non-green parts that are close to the edges of the field
ignored, such as the goal posts and balls that are on the border lines. In order to not
lose information about those important objects, a convex-hull is formed for the starting
points of the green segments. That way, we define the real green field borders where all
objects of interests fall inside; hence, we can basically ignore, say all orange regions,
that are outside the field borders. That provides a natural way of pruning false percepts
without having to process them beforehand. After the field borders are constructed, the
shorter scan lines are extended back to these borders, so that it is possible to use them
to detect the goal posts and balls that are close to the borders.

After all these constructions and corrections, each scan line is traced to find colored
segments on them. After only one pass over these scan lines, we end up with groups
of segments with the colors we are interested in, namely, orange, white, blue. The next
step is to build regions from these segments, based on the information on whether two
consecutive segments “touch” each other, that is they are on two consecutive scan lines
and either of them has a start or end point within the borders of the other one. Two
consecutive touching segments are merged into a single region. For white segments
though, there are some additional conditions, such as change in direction and change
in length ratio. These additional constraints guarantee that all field lines are not merged
into a single, very big region, but instead into smaller and more distinctive regions. After
the construction of these regions, they are passed to the so called the region analyzer
module to be further filtered and processed for the detection of the ball, the field lines
and intersections of them, and the goal posts.



Robot Perception We percept robots on the field by scanning non green areas in the
image. We apply certain sanity checks to validate the distance of robot from field bound-
ary. We also use the size of robots to create an obstacle boundary and discard all possible
robots in that boundary. We determine the color of the robot by scanning color of shirt
on robot area as seen in Figure 1.

Fig. 1. Robot perception on the image.

White Goal Perception We use the structure of the field to create possible spots for
goal bars. The distance of the goal bar from the end of field is fixed. We detect the end
of the field and measure the distance of objects in the field. If we get an object closer
to the distance between goal bar and the end of the field, we assign first green pixel as
the bottom of the goal bar as seen in Figure 2. Although, this method works reasonably
well, it susceptible to error for detection of field border. Therefore, we are also working
to use edge detection to validate possible goal bar spots.

Fig. 2. White goal perception on the image.



2.2 World Modeling and Short Term Observation Memory

The perception module of Cerberus provides instantaneous information. While the re-
active behaviors like tracking the ball with the head requires only instantaneous infor-
mation, other higher level behaviors need more than that.

The planning module requires perceptual information with less noise and in a more
complete manner. The world modeling module should reduce sensor noise and com-
plete the missing state information by predicting the state. This is a state prediction
problem and we use the most common approach in the literature, the Kalman Filter [3],
for solving this problem.

In our setting, the observations are the distance and the bearing of the objects with
respect to the robot origin, and the state we want to know consists of the actual distance
and bearing information. In addition to that, for dynamic objects like the ball, the state
vector also includes distance change and bearing change information to aid prediction.

For any object, the observation is z = {d, θ}where d and θ are distance and bearing,
respectively, to the robot origin. For the stationary objects, the state is m = {d, θ} and
the state evolution model is m1

k+1 = I ×mk and zk = I ×mk where k is time and I
is the unit matrix.

For the dynamic objects, the observation is the same but the state is represented as
m = {d, θ, dd, dθ} where dd is the change in distance in one time step and dθ is the
change in bearing likewise. The state evolution model is:

dk+1

θk+1

dd,k+1

dθ,k+1

 =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




dk
θk
dd,k
dθ,k


and the observation model is:

(
dk+1

θk+1

)
=

(
1 0 0 0
0 1 0 0

)
dk
θk
dd,k
dθ,k


As can be observed from the model specifications, we omit the correlation between

the objects and use filter equations for each object separately. If an object is not observed
for more than a pre-specified time step, the belief state is reset and the object is reported
as unknown. For our case, this time step is 270 frames for stationary objects and 90
frames for dynamic objects.

In the update steps, odometry readings are used. The odometry reading is u =
{dx, dy, dθ} where dx and dy are displacements in egocentric coordinate frame and
dθ is the change in orientation. When an odometry reading is received, all the state
vectors of known objects are geometrically re-calculated and the associated uncertainty
is increased.

The most obvious effect of using a Kalman Filter is that the disadvantage of having
a limited field of view is reduced. As the robot pans its head, it can be aware of distinct
landmarks which are not in the same field of view at the same time.



3 Self Localization

Cerberus employs vision based Monte Carlo Localization (MCL). In the MCL algo-
rithm, the belief state is represented by a particle set and each element represents a pos-
sible pose of the robot. We use MCL with a set of practical extensions (X-MCL) which
is detailed in [4]. Until last year, we used the output of the world modeling module as
input to the localization module. Namely the filtered landmarks are used as observations
for the localization module. However, this year we are modifying the algorithm to filter
unidentified observations.

The new approach is inspired from FastSLAM [5] algorithm and Multi-Hypothesis
tracking [6]. In FastSLAM, each particle has its own world model (i.e. map). In Multi-
Hypothesis tracking, there are multiple Gaussians where each relies on a different data
association sequence and their numbers are limited by pruning.

In our localization approach, we define landmark groups which a non-unique ob-
servation might be observed from. For example a T type field line intersection might be
observed from 6 different landmarks. Similarly a goal bar observation might come from
left or right goal bar. We define a label for each non-unique observation which indicates
the identity in its group. We augment the discrete label variable to the particles. Each
particle now represents robot pose and a label variable associating non-unique obser-
vations to landmarks in the map. This model is an instance of Switching Observation
Model [7]. The particles with wrong labels eventually die in the resampling steps.

To overcome the unified goal bar color problem, with the assumption that initial po-
sition of the robot is known, the model described above works with minimal change. For
the kidnapping situations, we plan to develop a binary hypothesis based approach. The
methodology is as follows. After kidnapping (or falling), the robot makes an assumption
about the side of the first observed goal bar, and perform localization normally. After
that it simultaneously tries to validate this hypothesis based on robot observations, and
incoming messages from the teammates.

3.1 Motion

For bipedal locomotion, we use two different walking engines. While the first engine
is developed in the lab, we use the B-Human walking engine and motion infrastructure
[1].

In the first bipedal walking algorithm, we defined two important features for each
leg; leg extension, and leg angle. Leg extension is the distance between the hip joint
and the ankle joint. It determines the height of the robot while moving. Leg angle is the
angle between the pelvis plate and the line from hip to ankle. It has three components;
roll, pitch, and yaw. Using these features helps us have more abstract calculations for
the motion.

In order to find the leg angle and foot angle features, motion at each step is divided
into five sub-motions; shifting, shortening, loading, and swinging.

In the shifting sub-motion, lateral shifting of the center of mass is handled. The sec-
ond important sub-motion is the shortening signal and it is not always applied. During
the shortening phase, both a joint angle for the foot and a part of the leg extension value
are calculated. The third sub-motion of the step is loading which is also not always



applied. In swinging part, the leg is unloaded, shortened and moved along the way of
motion which reduces the stability of the system considerably. At the end, the corre-
sponding parts of the sub-motions are added, and the values for the motion features are
calculated.

After determining a feasible parameter set by hand, we applied an optimization al-
gorithm, Evolutionary Strategies, to fine-tune the walking motion. Although both speed
and balance is used in the fitness function, our walk engine is an open-loop engine dur-
ing the game and it is vulnerable on the accumulation of balance disturbance. More
details about this walking strategy can be found in [8].

4 Planner

The soccer domain is a continuous environment, but the robots operate in discrete time
steps. At each time step, the environment, and the robots’ own states change. The plan-
ner keeps track of those changes, and decides the new actions. The main aim of the
planner is to sufficiently model the environment and update its state. Additionally, the
planner should provide control inputs according to this model. Previously, we developed
a Dec-POMDP based planner. Currently, we use a finite state machine based planner
architecture as explained in Section 4.1. We also extend the behaviors by integrating
market-based dynamic role allocation mechanism as explained in Section ??.

4.1 Finite State Controller based Planner

The Finite State Controller (FSC) based planner makes use of the formal model of
the problem. At every planner step, the robot is in a particular state and we want our
robot to take the best action in that state. FSC is based on the conventional Hierarchical
Finite State Machine model, however, we changed some aspects to use it in high-level
robot planning. There are states which correspond to the environment states. Transitions
take place according to the current environment observations. There are also actions
which will be taken when the robot is at a particular state. The robot can execute many
actions in a particular state and these actions may override each other according to
their priority. The most powerful part of this planner architecture is that once we code
particular transitions or actions, they can be reused in different behaviors. We have
developed a GUI tool called FSC Designer for this purpose [9]. FSC Designer enables
easy development of finite state controller based behaviors by using already developed
Transition and Action constructs as seen in Figure 3.

4.2 Dynamic Role Allocation

We define a team formation for four field players. A place in the formation corresponds
to a role, such as striker, attacker, defender and winger. Robots are calculating their
costs for every role. Then, every robot chooses the one which has the lowest cost for
itself. The costs are calculated according to the distance of the robot to the position of
the role on the field. This calculation and assignment is done in distributed fashion by
using teammate messages shared between players. The exact position of the robots are



Fig. 3. Snapshot of FSC Designer

determined according to the position the ball. Since, it would result in oscillation in role
assignment, allocation mechanism is run at once every second.

5 Coach Robot

We developed a coach robot to assist the team with strategic decisions. The coach robot
percepts robot positions on the field and create a world model of all robots. It calculates
soccer metrics [10] from this world model and chooses one of the predefined team
formations. Currently, we have three formations, offensive, defensive and neutral. These
different formations determines how likely team will be on other team’s half field. The
calculated formation is carried out by the dynamic role allocation module of the planner.

6 Conclusion and Future Works

In conclusion, we aim to develop successful autonomous systems which are able to per-
form well in adversarial environments. We summarize our methods for solving certain
problems in RoboCup Standard Platform League. In future, we aim to solve multi-agent
planning, and kidnapping problems which are the top challenges of SPL. We perform
research on the application of Dec-POMDP methods for robot soccer [11]. For solving
the kidnapping problem, and in general the localization in symmetric field, we work on
methods which effectively merge world models of teammates.

Acknowledgments

This work is supported by Boğaziçi University Research Fund through project 7631.



References

1. Thomas Röfer, Tim Laue, Judith Müller, Dennis Schüthe, Arne Böckmann, Dana
Jenett, Sebastian Koralewski, Florian Maaß, Elena Maier, Caren Siemer, Alexis Tso-
gias, and Jan-Bernd Vosteen. B-human team report and code release 2014, 2014.
Only available online: http://www.b-human.de/downloads/publications/
2014/CodeRelease2014.pdf.

2. Ethem Alpaydın. Machine Learning. MIT Press, 2004.
3. Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical report, Uni-

versity of North Carolina at Chapel Hill, Chapel Hill, NC, Chapel Hill, NC, USA, 1995.
4. K. Kaplan, B. Çelik, T. Meriçli, Ç. Mericli, and H. L. Akın. Practical extensions to vision-

based monte carlo localization methods for robot soccer domain. RoboCup 2005: Robot
Soccer World Cup IX, LNCS, 4020:420–427, 2006.

5. M. Montemerlo. FastSLAM: A factored solution to the simultaneous localization and map-
ping problem with unknown data association. In CMU Robotics Institute, 2003.

6. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge, MA,
2005.

7. Francois Caron, Manuel Davy, Emmanuel Duflos, and Philippe Vanheeghe. Particle filtering
for multisensor data fusion with switching observation models: Application to land vehicle
positioning. IEEE Transactions on Signal Processing, 55(6-1):2703–2719, 2007.

8. B. Gökçe and H. L. Akın. Parameter optimization for a signal-based omni-directional biped
locomotion using evolutionary strategies. In RoboCup 2010 Symposium, Singapore, June 25,
2010.

9. O. Aşık and H. L. Akın. FSC Designer: A Visual FSM Design Tool for Robot Control. In
3rd Computer Science Student Workshop (CSW’12), 2012.

10. Cetin Mericli and H. Levent Akın. A Layered Metric Definition and Evaluation Framework
for Multirobot Systems. In Iocchi, L and Matsubara, H and Weitzenfeld, A and Zhou, C,
editor, ROBOCUP 2008: ROBOT SOCCER WORLD CUP XII, volume 5399 of Lecture Notes
in Computer Science, pages 568–579, 2009.

11. O. Aşık and H. L. Akın. Solving Multi-Agent Decision Problems modeled as Dec-POMDP:
A Robot Soccer Case Study. In RoboCup 2012 Symposium, June 24, 2012, Mexico City,
2012.

http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf

	Cerberus'15 RoboCup SPL Team Description
	 H. Levent Akın, Okan Asık, Binnur Görer, Bahar Irfan, Metehan Doyran, Berna Erden, Kadriye Yasemin Usta 

